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FIGURE 2.1.1  The Standard Model of particle physics describes the basic building blocks of the
universe and the rules governing their interactions.  This chart displays the basic quarks and leptons
that make up matter and the four force-carrying boson particles.  For each so-called family (columns
in the chart), there are two quarks (an up type and a down type) and two leptons (a neutrino and an
associated partner lepton).  The neutrinos have been the most elusive part of the Standard Model
because of their minimalist character—they were posited to interact only very weakly, to be mass-
less, and to be independent of one another.  Recent experiments have shown that neutrinos do in
fact have mass, and that they can transform into one another.  Figure courtesy of Paul Nienaber and
Andrew Finn, BooNE Collaboration.

continues
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SIDEBAR 2.1 CONTINUED

FIGURE 2.1.2  As described in the text,
neutrinos have been shown to oscillate—
an observation that shows, in effect, that
they have mass.  Understanding neutrino
oscillations requires a trip into the world
of quantum mechanics; this figure uses a
musical analogy to represent the behavior
of a simplified model.  Imagine only two
neutrinos that can oscillate into one an-
other, and imagine representing each neu-
trino as a musical pitch.  Further assume
that only one pitch at a time can be de-
tected.  Let the muon-neutrino be repre-
sented by a G-note and the electron-neu-
trino by, say, a B-note.  In the absence of
neutrino oscillations, one could assume
that a G-note originated as a G and would
remain forever a G, and likewise for a B.
However, with the possibility of neutrino
oscillations, a muon-neutrino G-note can
“de-tune” into a B-note as time passes,
and vice versa.  Since only one pitch at a
time can be detected, the neutrino will
sometimes “sound” like a G and some-
times like a B; the rate of de-tuning is re-
lated to the neutrino mixing parameters.
The probability of observing the muon-
neutrino as an electron-neutrino varies as
a function of time (or distance if the neu-
trino is traveling), as shown by the sinuso-
idal curves alongside the scales.  The de-
tailed properties of neutrino oscillations
are important to understanding how the
Standard Model particles interact and how
galaxies and the universe work.  Figure
courtesy of Paul Nienaber and Andrew
Finn, BooNE Collaboration.
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FIGURE 4.3  Shown here is
one depiction of a long-base-
line neutrino oscillation exper-
iment.  The neutrino beam is
produced by focusing an in-
tense beam of high-energy
protons on a proton-rich tar-
get such as beryllium.  The
particle debris is cleaned and
focused by a powerful electro-
magnetic system called a mag-
netic horn.  The resulting
beam consists of almost en-
tirely pions, which will decay
in flight into muons and
muon-neutrinos.  A steel ab-
sorber is used to stop the re-
maining pions and newly born
muons.  In the long-baseline
experiment, the berm of earth
in the figure is actually formed
by Earth itself; a neutrino
beam would travel thousands
of kilometers before arriving at
the target, where the neutrinos
are detected and identified by
their interactions with the de-
tector.  Figure inspired by il-
lustrations from Prof. Paul
Nienaber and undergraduate
Andrew Finn, BooNE Collabo-
ration.
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